

Introduction to clinical trials and therapeutic options for dystroglycanopathies

Katherine D Mathews

Outline

- Introduction to clinical trials and trial participation
- General approaches to potential treatments

Steps to a treatment trial

- Identify patients
 - Accurate diagnosis
 - Registries (CMDIR, Global FKRP Registry[see video for more information])
- Know the natural history of the disease
- Understand the cellular and molecular basis of disease (usually)
- Have a consistent standard of care to minimize variability that is not related to the intervention being tested
- Identify a possible treatment
- Test in cells and animal model(s) of the disease

Steps to a treatment trial—how are we doing across dystroglycanopathies?

- Identify patients
 - Accurate diagnosis
 - Registries 💊
- Know the natural history of the disease \checkmark

- Understand the cellular and molecular basis of disease (usually)
- Have a consistent standard of care to minimize variability that is not related to the intervention being tested
- Identify a possible treatment
- Test in cells and animal model of the disease \checkmark

Human Trials of a Possible New Treatment

- Phase I Investigation (few subjects, often healthy)
 - Look for toxicity
- Phase II Investigation (small study)
 - Establish dose
 - Assess for safety
 - Look for hint of therapeutic effect
- Phase III Investigation
 - Large number of patients
 - Control population (placebo group)
 - Determines if treatment is effective
 - a good study should provide a clear answer about whether or not the treatment works
- Phase IV (post-marketing surveillance)
- Phases may be combined in rare diseases
- Millions of dollars required for large Phase III trial
- This sequence typically takes several years

Success rate for a new drug

- For a compound entering Phase I trials, <10% get FDA approval and commercial release
- Compounds that make it to Phase III
 - Historically <50% get FDA approval
 - Rate appears to be rising
- Most drug failures are due to problems with efficacy and/or safety.
 - D. Lowe, Science Translational Medicine, 2019

Placebo controlled trials

- Needed to demonstrate a difference that is due to the drug rather than something else
 - Change in national practice
 - Increased attention/therapy due to being in trial
 - Practice effect on outcome measures
 - Other
- Placebo controlled phase 3 trial often followed by access to active drug for <u>all</u> participants until
 - It is commercially available
 - It is determined to be unsafe/not effective

Participation in a clinical treatment trial

- Clinical trial participation a major commitment!
 - Helping others is often one of the reasons people participate
- Dystroglycanopathies are rare diseases, so enrolling enough subjects will be a challenge
- Things to consider:
 - Do you have the time and willingness to attend study visits and travel (if needed)?
 - Costs associated with travel are paid by the study in most cases
 - Are you willing to accept the possibility of a placebo?
 - Do you understand the risks and are they acceptable, understanding that the treatment being studied might not work?

Treatment strategies (not an exhaustive list)

- Treat symptoms
- Drugs to modify some or all of disease process, nonspecific
 - Decrease fibrosis
 - Increase muscle bulk
 - Anti-oxidants
 - Anti-inflammatories
 - Improve muscle repair and regeneration
 - Upregulate related genes, such as LARGE
- Drugs to target disease-specific metabolic pathway
- Gene replacement
- Edit the genetic basis of disease, typically mutation-specific
- Cell-based therapy (stem cell/myoblasts)
- Combination therapies are likely

Potential goals of treatment

- Disease progression
 - Slow disease progression
 - Stop disease progression
 - Improve disease and stop progression
- Expected effect helps determine the number of people in the trial and duration of trial

Goals of treatment in dystroglycanopathies

- Tissue to be treated
 - Skeletal muscle (includes breathing)
 - Heart muscle
 - Smooth muscle (bowel, bladder, blood vessels)?
 - Brain?

Studies thus far primarily focused on FKRP related MD

- The most common gene affected so easier to study than very rare – diseases
 - LGMD2I/R9 accounts for ~10% of LGMD patients
- The principles will apply to at least some of the other dystroglycanopathies
- Effective treatment in one disease will drive progress in another

22,6%

Trials in LGMD2I/R9 that are closed

- Myostatin inhibitor
 - Non-specific
 - Designed to increase muscle bulk
 - Not effective in clinical trial
- Deflazacort trial closed due to insufficient enrollment

CDP-ribitol: target metabolic pathway with FKRP mutations

- Everyone has some FKRP activity
- FKRP uses CDP-ribitol to add ribitol to the alpha-dystroglycan sugar chain
 - Concept: Increase the amount of CDP-ribitol in the cell, drive the residual FKRP to work harder and increase glycosylation

Gene replacement

- Gene replacement in neuromuscular diseases
 - The gene is packaged inside a modified virus (AAV)
 - Given as an IV infusion
 - Currently, can only get once due to immune response
- Several companies are exploring gene replacement in LGMD2I/R9
- The only genetic disease with FDA approved gene replacement with systemic delivery is SMA

http://signagen.com/im ages/AAV_Size_EM.jpg

Considerations with gene replacement

- Does dosage matter?
 - Some mouse evidence suggests that too much FKRP is harmful to muscle
 - There are human examples in nature where either too much or too little of a gene causes disease
 - 1 copy PNP22 \rightarrow hereditary predisposition to pressure palsies
 - 2 copies \rightarrow healthy
 - 3 copies \rightarrow Charcot Marie Tooth disease type 1A
- Immune response to viral load
- Is the heart targeted?

Summary

- Some ideas or treatments that are promising, even in Phase 2 human trials, don't work or are not safe
- A phase 3 trial is designed to determine if a treatment works
- There are many potential approaches to treating a dystroglycanopathy
 - Combinations might ultimately be the most effective
- Every success in treating a neuromuscular disease is a success for the whole larger community—proves it can be done

Industry Q and A

- Dr Nguyen, AskBio
- Dr. Rudnicki, Satellos
- Dr. Sproule, ML Bio
- Videos from each speaker are available in the Whova App
- Thanks to all of them for participating!