Patient skin fibroblasts: A versatile tool for identification of novel muscular dystrophy disease genes

Tobias Willer

The Dystroglycanopathies: A Patient and Family Conference 08-18-2012

Dystrophin Glycoprotein Complex

Loss of α -Dystroglycan functional glycosylation results in congenital muscular dystrophy

Normal

Walker-Warburg syndrome (WWS) Muscle-eye-brain disease (MEB) Fukuyama congenital muscular dystrophy (FCMD) MDC1C/1D Limb girdle muscular dystrophy (LGMD)2I/2K/2M/2N

Large^{myd} mouse

A proposed mechanism for the basal-lamina-mediated prevention of membrane damage during lengthening contractions.

Han R et al. PNAS 2009;106:12573-12579

secretory pathway

6 genes know to be involved in α -dystroglycan glycosylation

Endoplasmic reticulum

• POMT1

• POMT2

<u>Golgi</u>

- POMGnT1
- FKRP
- Fukutin
- LARGE1

Glycosylation happens during secretion along the secretory pathway

Barresi, R. et al. J Cell Sci 2006;119:199-207

The assembly line - a simple model for α -dystroglycan glycosylation

each glycosyltransferase / worker has a very specific skill set to perform only one specific task

Dystroglycanopathy candidate genes

primary dystroglycanopathy: dystroglycan (DAG1) defect, 1 patient identified secondary dystroglycanopathy: 6 known/putative genes causing

- **POMT1** (9q34.1)
- **POMT2** (14q24.3)
- **POMGnT1** (1p34.1)
- FKRP (19q13.32)
- *Fukutin* (9q31)
- LARGE1 (22q12.3)

Currently only 50% of dystroglycanopathy patients can be genetically diagnosed

α -DG glycosylation defect in dystroglycanopathy patient skin fibroblasts

Complementation assay

Ability of LARGE to hyperglycosylate α -dystroglycan correlates with the severity of the clinical phenotype

LARGE can bypass α-DG glycosylation defects in CMD patients

The "LARGE" effect

Barresi et al., NatMed (2004)

α -Dystroglycan

Inamori et al., Science (2012)

Bypass of α -DG glycosylation defects by LARGE correlates with residual activity of impaired CMD gene

Willer et al., Nature Genetics 44, 575–580 (2012)

Genetic and Phenotypic distribution of cells analyzed by On-Cell Western Blot complementation (n=63)

Genetic defect	WWS	MEB/FCMD	CMD	total	total %
POMT1	8		5	13	21%
POMT2	1	6	5	12	19%
POMGnT1	1	9	3	13	21%
FKTN	1	4	3	8	13%
FKRP	1		4	5	8%
LARGE			1	1	1%
n.d.	11			11	17%
total	23	19	21	63	100
total %	37%	30%	33%	100	

Patient fibroblast complementation asssay: unknowns

Yeast cell mating

Hypothesis:

Fusion between co-cultured cells harboring recessive mutations with independent genetic defects would result in successful rescue.

PEG induced cell fusion of mammalian cells

Cell fusion of independent patient fibroblasts restores α -DG glycosylation defect

Cell fusion of independent patient fibroblasts restores α -DG glycosylation defect

PEG induced cell fusion assay

Target group for new gene discovery

Linkage analysis of inbred samples in WWS #1 group

Inbred samples in WWS #1 complementation group have overlapping linkage at Chr. 7p21 and share mutations in *ISPD*

ISPD : Isoprenoid synthase domain containing

Validation of pathogenic *ISPD* mutations with fibroblast complementation

Willer et al., Nature Genetics 44, 575–580 (2012)

ISPD-WWS patient P1 : clinical presentation

Brain MRI

Willer et al., Nature Genetics 44, 575–580 (2012)

Muscle biopsy

Knockdown of zebrafish *ispd* recapitulates pathological defects of human WWS

Roscioli et al., Nature Genetics 44, 581-585 (2012)

Where does ISPD fit into the α -dystroglycan glycosylation assembly line ?

- What is the function of ISPD?
- How do *ISPD* defects affect α -DG glycosylation ?
- What step in the sugar synthesis is affected by ISPD defects ?

How do *ISPD* defects affect α -DG glycosylation ? What step in the sugar synthesis is affected by ISPD defects ?

ISPD mutations impair protein **O**-mannosylation

Summary

- Patient fibroblasts can be used to study α-dystroglycan glycosylation and complementation assay can be used to diagnose/validate genetic defect
- Identification of 5 novel WWS complementation groups representing 5 new WWS candidate genes
- Identification of *ISPD* gene defects as common cause in muscular dystrophies associated with α -dystroglycan glycosylation defect
- *ISPD* mutations lead to impaired α -dystroglycan *O*-mannosylation, establishing a new pathway and mechanism for disease in WWS.

Outlook

New dystroglycanopathy gene discovery:

Identify genetic defect in the remaining unidentified 4 WWS complementation groups

Screen for therapeutic compounds:

test in cell culture and mouse model systems

Acknowledgement

Kevin Campbell

Steve Moore Kathy Mathews

Takako Yoshida-Moriguchi Daniel Beltran David Venzke

Andrew Crimmins Greg Morgensen Jamie Eskuri Alex Dietz Dan Michele

Campbell lab University of Iowa

Hane Lee / Stanley Nelson

University of California, Los Angeles, CA, USA

Mark Lommel / Sabine Strahl

University of Heidelberg, Germany

Adeno vector generation

The University of Iowa Center for Gene Therapy (NIDDK P30 DK54759 Harry Schachter Jiri Vajsar University of Toronto, Canada

Hans v. Bokhoven Radboud University Nijmegen, Netherland

Francesco Muntoni / Sebahattin Cirak Imperial College London, UK

Thomas Voit Institute of Myology, Paris, France

Andrea Loder White-Wilson Medical Center, Ft. Walton Beach, Florida

Tom Winder PreventionGenetics, Marshfield, WI, USA

Pascale Guicheney / Nigel Clarke INSERM, Paris, France

Funding:

- Paul D. Wellstone Muscular Dystrophy Cooperative Research Center Grant (1U54NS053672)
- ARRA Go Grant (1 RC2 NS069521-01)